Introduction Results Thanks!

Universal sets for σ -ideals

Marcin Michalski

Wrocław University of Science and Technology

Winter School in Abstract Analysis 2017, section Set Theory and Topology 28.01 - 04.02.2017, Hejnice

- ∢ ≣ →

 э

Let X be a Polish space, ω^{ω} denote the Baire space.

Definition

We say that a set $U \subseteq X \times \omega^{\omega}$ is universal for a family of sets $\mathcal{F} \subseteq P(X)$ if for every $F \in \mathcal{F}$ there exists $y \in \omega^{\omega}$ such that

$$U^{y} = \{x \in X : (x, y) \in U\} = F$$

< 回 > < 三 > < 三 >

Let X be a Polish space, ω^{ω} denote the Baire space.

Definition

We say that a set $U \subseteq X \times \omega^{\omega}$ is universal for a family of sets $\mathcal{F} \subseteq P(X)$ if for every $F \in \mathcal{F}$ there exists $y \in \omega^{\omega}$ such that

$$U^{y} = \{x \in X : (x, y) \in U\} = F$$

Widely known facts are that for each $\alpha < \omega_1$ there exists a universal Σ^0_{α} set for the family of Σ^0_{α} sets and that there exists an analytic universal set for a family of analytic sets.

通 と く ヨ と く ヨ と

Let $\mathcal{I} \subseteq P(X)$ be a nontrivial σ -ideal possesing a Borel base.

Definition

We say that a set $U \subseteq X \times \omega^{\omega}$ is universal for the σ -ideal \mathcal{I} if a family of horizontal slices $\{U^{y} : y \in \omega^{\omega}\}$ is a Borel base of \mathcal{I} .

We are interested in finding universal sets of possibly low complexity.

(同) (ヨ) (ヨ)

Results

Theorem

There are Borel universal sets of minimal complexity for

- *M* a family of meager sets;
- \mathcal{N} a family of null subsets of 2^{ω} ;
- \mathcal{E} a σ -ideal generated by closed null subsets of 2^{ω} ;
- σ-ideal of countable sets.

- ₹ 🖹 🕨

- ∢ ≣ →

Introduction Results Thanks!

 F_{σ} universal set for the category

Marcin Michalski

Universal sets for σ -ideals

2

・聞き ・ ヨキ ・ ヨキ

Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega^{\omega}$ for open and dense subsets of X.

< 同 > < 三 > < 三 >

Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega^{\omega}$ for open and dense subsets of X.

• $\{B_n : n \in \omega\}$ - enumeration of basic open sets.

< 同 > < 三 > < 三 >

Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega^{\omega}$ for open and dense subsets of X.

- $\{B_n : n \in \omega\}$ enumeration of basic open sets.
- Let us define $K : \omega \times \omega \to \omega$ in the following way:

$$K(n,0) = \min\{k : B_k \subseteq B_n\},\$$

$$K(n,m+1) = \min\{k : B_k \subseteq B_n \land k > K(n,m)\}.$$

K(n, m) gives a number of the (m+1)st basic open set contained in B_n with respect to our enumeration.

くぼう くほう くほう

Let X be a Polish space. We will start with constructing a universal open set $U \subseteq X \times \omega^{\omega}$ for open and dense subsets of X.

- $\{B_n : n \in \omega\}$ enumeration of basic open sets.
- Let us define $K : \omega \times \omega \to \omega$ in the following way:

$$K(n,0) = min\{k : B_k \subseteq B_n\},\$$

$$K(n,m+1) = min\{k : B_k \subseteq B_n \land k > K(n,m)\}.$$

K(n, m) gives a number of the (m+1)st basic open set contained in B_n with respect to our enumeration.

• Let us set:

$$(x,y) \in U \Leftrightarrow x \in \bigcup_{n \in \omega} B_{K(n,y(n))}.$$

< 同 > < 三 > < 三 > -

F_{σ} universal set for the category continued

• Now let us fix Let b be a bijection $\omega \times \omega$ and ω and set a homeomorphism $h: \omega^{\omega} \to \omega^{\omega^{\omega}}$ given by a formula:

(h(x)(m))(n) = x(b(m,n)),

for all $x \in \omega^{\omega}$.

くぼう くほう くほう

F_{σ} universal set for the category continued

• Now let us fix Let b be a bijection $\omega \times \omega$ and ω and set a homeomorphism $h: \omega^{\omega} \to \omega^{\omega^{\omega}}$ given by a formula:

$$(h(x)(m))(n) = x(b(m,n)),$$

for all $x \in \omega^{\omega}$.

• Finally let us define a set G:

$$(x,y) \in G \Leftrightarrow x \in \bigcap_{n \in \omega} U^{h(y)(n)}$$

G is a G_{δ} universal set for dense G_{δ} subsets of *X*, so G^{c} is the desired set.

< 同 > < 三 > < 三 >

Ξ.

・聞き ・ ヨキ ・ ヨキ

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_{\epsilon} \subseteq X \times \omega^{\omega}$ for open sets of measure $\leq \epsilon$.

伺き くまき くまき

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_{\epsilon} \subseteq X \times \omega^{\omega}$ for open sets of measure $\leq \epsilon$.

• Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.

3

伺 ト イヨ ト イヨト

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_{\epsilon} \subseteq X \times \omega^{\omega}$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.
- Let $2^{\omega} \times \omega^{\omega} \supseteq U = \{(x, y) : x \in \bigcup_{n \in \omega} B_{y(n)}\}$ be a universal open set with respect to our enumeration.

3

伺 ト イヨト イヨト

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_{\epsilon} \subseteq X \times \omega^{\omega}$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.
- Let $2^{\omega} \times \omega^{\omega} \supseteq U = \{(x, y) : x \in \bigcup_{n \in \omega} B_{y(n)}\}$ be a universal open set with respect to our enumeration.
- Let us fix ε > 0 and consider a set V = {y ∈ ω^ω : λ(U^y) ≤ ε}.

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_{\epsilon} \subseteq X \times \omega^{\omega}$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.
- Let $2^{\omega} \times \omega^{\omega} \supseteq U = \{(x, y) : x \in \bigcup_{n \in \omega} B_{y(n)}\}$ be a universal open set with respect to our enumeration.
- Let us fix $\epsilon > 0$ and consider a set $V = \{y \in \omega^{\omega} : \lambda(U^{y}) \leq \epsilon\}.$
- V is closed so there is a continuous function $f: \omega^{\omega} \to V$. Let us set:

$$U_{\epsilon} = (Id \times f)^{-1}[2^{\omega} \times V],$$

First we will show that for every $\epsilon > 0$ there exists a universal open set $U_{\epsilon} \subseteq X \times \omega^{\omega}$ for open sets of measure $\leq \epsilon$.

- Let $\{B_n : n \in \omega\}$ by an enumeration of basic clopen sets.
- Let 2^ω × ω^ω ⊇ U = {(x, y) : x ∈ ⋃_{n∈ω} B_{y(n)}} be a universal open set with respect to our enumeration.
- Let us fix $\epsilon > 0$ and consider a set $V = \{y \in \omega^{\omega} : \lambda(U^{y}) \leq \epsilon\}.$
- V is closed so there is a continuous function $f: \omega^{\omega} \to V$. Let us set:

$$U_{\epsilon} = (Id \times f)^{-1}[2^{\omega} \times V],$$

• Finally let us define:

$$(x,y) \in G \Leftrightarrow x \in \bigcap_{n \in \omega} U^{h(y)(n)}_{rac{1}{n+1}}$$

G is the set.

Introduction Results Thanks!

Theorem

Let us assume that the base of \mathcal{I} is contained in the class Σ_{α}^{0} and let U be universal Σ_{α}^{0} set for Σ_{α}^{0} sets. Then if a set $\{y \in \omega^{\omega} : B^{y} \in \mathcal{I}\}$ is analytic, then there is a universal Σ_{α}^{0} set for \mathcal{I} . The same holds for the class Π_{α}^{0} .

< 同 > < 三 > < 三 >

Introduction Results Thanks!

Thank you for your attention!

・ 同 ト ・ ヨ ト ・ ヨ ト